36 research outputs found

    Separable and Low-Rank Continuous Games

    Full text link
    In this paper, we study nonzero-sum separable games, which are continuous games whose payoffs take a sum-of-products form. Included in this subclass are all finite games and polynomial games. We investigate the structure of equilibria in separable games. We show that these games admit finitely supported Nash equilibria. Motivated by the bounds on the supports of mixed equilibria in two-player finite games in terms of the ranks of the payoff matrices, we define the notion of the rank of an n-player continuous game and use this to provide bounds on the cardinality of the support of equilibrium strategies. We present a general characterization theorem that states that a continuous game has finite rank if and only if it is separable. Using our rank results, we present an efficient algorithm for computing approximate equilibria of two-player separable games with fixed strategy spaces in time polynomial in the rank of the game

    Structure of Extreme Correlated Equilibria: a Zero-Sum Example and its Implications

    Get PDF
    We exhibit the rich structure of the set of correlated equilibria by analyzing the simplest of polynomial games: the mixed extension of matching pennies. We show that while the correlated equilibrium set is convex and compact, the structure of its extreme points can be quite complicated. In finite games the ratio of extreme correlated to extreme Nash equilibria can be greater than exponential in the size of the strategy spaces. In polynomial games there can exist extreme correlated equilibria which are not finitely supported; we construct a large family of examples using techniques from ergodic theory. We show that in general the set of correlated equilibrium distributions of a polynomial game cannot be described by conditions on finitely many moments (means, covariances, etc.), in marked contrast to the set of Nash equilibria which is always expressible in terms of finitely many moments

    Nash embedding and equilibrium in pure quantum states

    Full text link
    With respect to probabilistic mixtures of the strategies in non-cooperative games, quantum game theory provides guarantee of fixed-point stability, the so-called Nash equilibrium. This permits players to choose mixed quantum strategies that prepare mixed quantum states optimally under constraints. In this letter, we show that fixed-point stability of Nash equilibrium can also be guaranteed for pure quantum strategies via an application of the Nash embedding theorem, permitting players to prepare pure quantum states optimally under constraints.Comment: 7 pages, 1 figure. arXiv admin note: text overlap with arXiv:1609.0836

    Nash Equilibria in Multi-Agent Motor Interactions

    Get PDF
    Social interactions in classic cognitive games like the ultimatum game or the prisoner's dilemma typically lead to Nash equilibria when multiple competitive decision makers with perfect knowledge select optimal strategies. However, in evolutionary game theory it has been shown that Nash equilibria can also arise as attractors in dynamical systems that can describe, for example, the population dynamics of microorganisms. Similar to such evolutionary dynamics, we find that Nash equilibria arise naturally in motor interactions in which players vie for control and try to minimize effort. When confronted with sensorimotor interaction tasks that correspond to the classical prisoner's dilemma and the rope-pulling game, two-player motor interactions led predominantly to Nash solutions. In contrast, when a single player took both roles, playing the sensorimotor game bimanually, cooperative solutions were found. Our methodology opens up a new avenue for the study of human motor interactions within a game theoretic framework, suggesting that the coupling of motor systems can lead to game theoretic solutions

    Dynamic Stable Supplier Coalitions and Invariance in Assembly Systems with Commodity Components

    No full text

    Competitive Targeted Advertising Over Networks

    No full text
    corecore